dieu tiet dai han
tính toán điều tiết dài hạn dòng chảy theo phương pháp đồ thị
I. Bài toán
Xét bài toán điều tiết dài hạn trong chu kỳ một năm. Có thể mô tả như sau: Cho trước biểu đồ thủy văn của dòng sông. Thực chất là cho chuỗi giá trị lưu lượng nước của năm tính toán. Tùy theo mức độ đầy đủ của số liệu, giá trị được cho của lưu lượng nước có thể là trị số trung bình ngày, trung bình tuần, 1/2 tháng, thậm chí trung bình tháng. Cho trước dung tích hữu ích của hồ, cột nước cực đại Hmax, các đặc tính hồ (đường cong đặc tính thể tích, đặc tính mức nước thượng lưu, hạ lưu ...)
Cho trị số lưu lượng nước lớn nhất có thể làm việc của các tua bin QTmax. Yêu cầu: xác định trị số lưu lượng nước vận hành của NMTĐ ở các khoảng thời gian trong năm, sao cho sản lượng điện năng tổng của NMTĐ đạt trị số cực đại. Yêu cầu trên chính là hàm mục tiêu của điều tiết dài hạn (trong trường hợp xét độc lập hiệu quả điều tiết của NMTĐ). Các yêu cầu khác có thể coi là giới hạn vận hành : công suất vận hành tối thiểu của tổ máy (hoặc lưu lượng đảm bảo ít nhất) theo nhu cầu hệ thống, giới hạn mức nước cao nhất, thấp nhất trong hồ, lượng nước để lại trong hồ ở cuối chu kỳ điều tiết ...). Cũng cần nói thêm về hàm mục tiêu trong bài toán điều tiết dài hạn dòng chảy. Để tìm cực trị hàm mục tiêu là sản lượng điện năng, nói chung, đòi hỏi phải mô tả hàm và sử dụng những phương pháp toán học phức tạp. Đó là vì bài toán chứa nhiều quan hệ và giới hạn phi tuyến. Tương ứng với các điều kiện cụ thể (về các điều kiện ràng buộc, phương pháp giải) người ta sử dụng những hàm mục tiêu gần đúng tương đương khác nhau. Khi áp dụng phương pháp đồ thị, bài toán thường được mô tả hàm mục tiêu là làm giảm lượng nước xả xuống mức thấp nhất, trong khi đảm bảo lưu lượng nước vận hành đồng đều nhất có thể được. Lý thuyết và các tính toán cụ thể cho thấy kết quả điện năng nhận được rất gần với giá trị cực đại. Ngoài ra, nhà máy còn đảm bảo được ràng buộc về yêu cầu của hệ thống: phát công suất đều đặn giữa các mùa.
II. Phương pháp giải Ta xét phương pháp đồ thị với việc sử dụng các đường cong lũy tích. Bài toán được thực hiện theo các bước sau:
Bước 1: Dựa vào số liệu thủy văn đã cho vẽ đường cong lũy tích nước chảy vào hồ. Nói chung các số liệu được cho dưới dạng bảng số, nên đường cong lũy tích được vẽ gần đúng theo đường gấp khúc và làm trơn.
Bước 2: Dựa vào trị số dung tích hữu ích hồ chứa, vẽ một đường cong nằm dưới và cách đều đường cong lũy tích nước chảy vào hồ, một đoạn bằng Vhi. Đường cong vừa vẽ được gọi là đường cong kiểm tra. Dễ thấy rằng đường cong lũy tích nước điều tiết qua tua bin của NMTĐ (đang cần vẽ) chỉ có thể nằm giữa hai đường cong Đó là vì tính từ gốc thới gian đến một thời điểm bất kỳ thì tổng lượng nước chảy ra khỏi hồ chỉ có thể bằng hoặc nhỏ hơn tổng lượng nước chảy vào. Hơn nữa, khoảng cách giữa 2 đường cong lũy tích chính bằng lượng nước chênh lệch. Như vậy, khi lượng nước chênh lệch nhỏ hơn hoặc bằng Vhi thì đó chính là lượng nước giữ lại trong hồ. Lúc đó, đường cong lũy tích lưu lượng nước chảy ra khỏi hồ nằm bên trên đường cong kiểm tra. Nếu thể tích nước chênh lệch lớn hơn Vhi có nghĩa là hồ phải xả tràn, khi đó đường cong lũy tích nước chảy ra khỏi sẽ cắt và đi xuống dưới đường cong kiểm tra. Khoảng cách nằm dưới biểu thị thể tích nước xả.
Bước 3: vẽ đường cong lũy tích lưu lượng nước điều tiết tối ưu từ đầu đến cuối chu kỳ điều tiết. Hình 4_6 Để thuận lợi cho việc tính toán, chu kỳ điều tiết được chọn sao cho thời điểm đầu (t = 0) và thời điểm cuối (t = T) trùng với giai đoạn cuối của mùa nước cạn. Trên hình vẽ đã chọn các thời điểm này tương ứng với thời điểm cuối của mùa cạn. Cách chọn này cho phép ta vẽ ngay được phần đầu của đường cong lũy tích. Đó là vì vào giai đoạn cuối của mùa mùa nước cạn, phương án vận hành tối ưu của nhà máy là sử dụng hết nước của hồ, nhằm có thể tích hồ lớn nhất tích nước mùa lũ sắp tới. Lúc này mức nước trong hồ là thấp nhất (bằng mức nước chết), thể tích nước giữ lại bằng 0, đường cong lũy tích lưu lượng nước vận hành (chảy ra) phải vẽ trùng với đường cong lũy tích nước chảy vào hồ (khoảng cách bằng 0). Như vậy giai đoạn này lưu lượng nước vận hành cũng giữ vừa đúng bằng lưu lượng nước của dòng chảy. Quá trình vận hành như trên cũng chỉ có thể kéo dài đến thời điểm t1, là thời điểm mà lưu lượng nước trên sông đã khá lớn, đúng bằng QTmax (là lưu lượng nước tổng lớn nhất có thể vận hành qua các tua bin). Sau thời điểm này lưu lượng nước trên sông tiếp tục tăng lên, các tua bin cần vận hành với trị số tối đa không đổi là QTmax. Đường cong lũy tích tương ứng với giai đoạn này có thể vẽ được trùng với đường thẳng tiếp tuyến, tiếp xúc với đường cong lũy tích nước chảy vào hồ tại t1 . Độ nghiêng của tiếp tuyến có thể xác định nhờ biểu đồ tỉ lệ xích hình tia, tương ứng với trị số QTmax đã biết. Từ sau t1 lưu lượng nước trên sông lớn hơn lưu lượng nước vận hành nên có một lượng nước thừa được tích trữ lại trong hồ. Thể tích nước giữ lại chính bằng khoảng cách giữa hai đường cong luy tích. Từ hình vẽ có thể thấy được đến thời điểm t2 thì hồ đầy nước (đường cong lũy tích nước chảy ra khỏi hồ chạm đến đường cong kiểm tra). Sau thời điểm t2 lưu lượng nước trên sông tiếp tục lớn hơn lưu lượng nước vận hành (vẫn đang vận hành tối đa bằng QTmax), hồ đã đầy nước nên phải xả một lượng nước thừa qua đập. Thể tích nước xả tương ứng với diện tích nằm dưới đường cong kiểm tra (được vạch đen trên hình vẽ). Quá trình xả ũng chỉ cần kéo dài đến thời điểm t3. Đó là thời điểm mà lưu lượng nước của sông đã giảm đi, trở lại bằng QTmax (có thể vận hành hết được). Phương án vận hành sau t3 là vận hành với toàn bộ lưu lượng nước chảy vào (bằng QS) nhằm tiếp tục giữ cho hồ đầy nước một thời gian sau mùa lũ. Hơn nữa lưu lượng lúc này vẫn khá lớn. Đường cong lũy tích cần vẽ ở giai đoạn này trùng với đường cong kiểm tra (vì hồ luôn đầy nước). Việc sử dụng nước hồ được bắt đầu từ thời điểm t4 kéo dài đến t5. Đây là mùa nước cạn, phương án điều tiết được chọn là vận hành với trị số lưu lượng nước không đổi, xác định theo độ nghiêng của đường thẳng tiếp tuyến, tiếp xúc phía trên với đường cong kiểm tra tại t4 và tiếp xuác phía dưới với đường cong lũy tích nước chảy vào hồ tại t5. Trên hình vẽ của biểu đồ tỉ lệ xích hình tia ta xác định được trị số này là QP. Sau thời điểm t5 hồ hết nước (đường cong điều tiết chạm đến đường cong kiểm tra), đồng thời cũng là giai đoạn cuối của mùa nước cạn (giống như trạng thái tai t = 0) nên phương án điều tiết được thực hiện lặp lại như ở giai đoạn đầu.
Sau khi có đường cong lỹ tích điều tiết tối ưu, ta có thể xác định được mọi thông số vận hành khác của nhà máy ở mọi khoảng thời gian trong năm : trị số lưu lượng nước vận hành, thể tích nước trong hồ, mức nước thượng lưu, mức nước hạ lưu, cột nước của nhà máy từ đó tính được công suất vận hành của NMTĐ và sản ương điện năng cả năm. Hình 4.7
1. Trường hợp hồ có dung tích lớn phương pháp sợ chỉ căng.
Trường hợp hồ có dung tích tương đối lớn, khi tính toán điều tiết tối ưu lưu lượng nước xả có thể bằng 0. Trong trường hợp này việc tính toán điều tiết còn có thể thực hiện theo cách đơn giản hơn. Sau khi vẽ đường cong lũy tích nước chảy vào hồ và đường cong kiểm tra có thể xây dựng đường cong lũy tích điều tiết bằng cách vẽ liên tiếp các đoạn thẳng tiếp tuyến, tiếp xúc phía trên với đường cong kiểm tra và tiếp xúc phía dưới với đường cong lũy tích nước chảy vào hồ. Phần còn lại của đường cong được vẽ men theo các đường cong nói trên. Phương pháp này còn được gọi là phương pháp "sợi chỉ căng".
Thông thường với mọi trường hợp, người ta áp dụng thử đầu tiên phương pháp sợi chỉ căng. Sau đó kiểm tra riêng cho mùa lũ bằng cách vẽ tia tiếp tuyến với đường cong lũy tích nước chảy vào hồ. Nếu tiếp tuyến dốc hơn đường sợi chỉ căng thì phương pháp sợi chỉ căng thảo mãn, lấy làm kết quả tính toán. Trong trưng hợp ngược lại, sử dụng tia tiếp tuyến thay cho sợi chỉ căng và hiệu chỉnh lại đường cong lũy tích điều tiết (theo trường hợp có xả).hình 4_7
Bạn đang đọc truyện trên: AzTruyen.Top