ootaea

phương pháp đồ thị, kết hợp với các định

lý mà toán học hỗ trợ.

- Chính xác hoá nghiệm: thu hẹp dần khoảng chứa nghiệm để hội tụ được

đến giá trị nghiệm gần đúng với độ chính xác cho phép. Trong bước này ta

có thể áp dụng một trong các phương pháp:

+ Phương pháp chia đôi

+ Phương pháp lặp

+ Phương pháp tiếp tuyến

+ Phương pháp dây cung

4.2. Tách nghiệm

* Phương pháp đồ thị:

Trường hợp hàm f(x) đơn giản

- Vẽ đồ thị f(x)

- Nghiệm phương trình là hoành độ giao điểm của f(x) với trục x, từ đó suy

ra số nghiệm, khoảng nghiệm.

Trường hợp f(x) phức tạp

- Biến đổi tương đương f(x)=0 <=> g(x) = h(x)

- Vẽ đồ thị của g(x), h(x)

- Hoành độ giao điểm của g(x) và h(x) là nghiệm phương trình, từ đó suy

ra số nghiệm, khoảng nghiệm.

* Định lý 1:

Giả sử f(x) liên tục trên (a,b) và có f(a)*f(b)<0. Khi đó trên (a,b) tồn tại một

số lẻ nghiệm thực x ∈ (a,b) của phương trình f(x)=0. Nghiệm là duy nhất

nếu f’(x) tồn tại và không đổi dấu trên (a,b).

15

Ví dụ 1. Tách nghiệm cho phương trình: x3 - x + 5 = 0

Giải: f(x) = x3 - x + 5

f’(x) = 3x2 - 1 , f’(x) = 0 <=> x = ±1/ 3

Bảng biến thiên:

x - ∞ −1/ 3 1/ 3 +∞

f’(x) + 0 - 0 +

f(x)

yCĐ<0 +∞

- ∞ CT

Từ bảng biến thiên, phương trình có 1 nghiệm x < −1/ 3

f(-1)* f(-2) < 0, vậy phương trình trên có 1 nghiệm x ∈ (-2, -1)

Ví dụ 2. Tách nghiệm cho phương trình sau: 2x + x - 4 = 0

Giải: 2x + x - 4 = 0 ⇔ 2x = - x + 4

Aïp duûng phæång phaïp âäö thë:

Tæì âäö thë => phæång trçnh coï 1 nghiãûm x ∈ (1, 2)

4

1 2 4

1

y = 2x

2 y = -x + 4

16

* Âënh lyï 2: (Sai säú)

Giaí sæí α laì nghiãûm âuïng vaì x laì nghiãûm gáön âuïng cuía phæång trçnh

f(x)=0, cuìng nàòm trong khoaíng nghiãûm [ a,b] vaì f '(x) = ≥ m ≥ 0 khi a ≤ x

≤ b. Khi âoï

f (x)

x − α ≤

Vê du 3. Cho nghiãûm gáön âuïng cuía phương trình x4 - x - 1 = 0 laì 1.22.

Haîy æåïc læåüng sai säú tuyãût âäúi laì bao nhiãu?

Giải: f (x) = f (1.22) = 1.224 - 1.22 - 1 = - 0,0047 < 0

f(1.23) = 0.588 > 0

⇒ nghiãûm phæång trçnh x ∈ (1.22 , 1.23)

f '(x) = 4 x3 -1 > 4*1.223 - 1 = 6.624 = m ∀x ∈ (1.22 , 1.23)

Theo âënh lyï 2 : Δx = 0.0047/6.624 = 0.0008 (vç |x - α | < 0.008)

3.3. Tách nghiệm cho phương trình đại số

Xét phương trình đại số: f(x) = a0xn + a1xn-1 + … + an-1x + an = 0 (1)

Định lý 3:

Cho phương trình (1) có m1 = max {⏐ai⏐} i = 1, n

m2 = max {⏐ai⏐} i = 0,n −1

Khi đó mọi nghiệm x của phương trình đều thoả mãn:

2

0

1

2 n

1 x

a

x 1 m

m a

a

x ≤ ≤ + =

+

=

Định lý 4:

Cho phương trình (1) có a0 > 0, am là hệ số âm đầu tiên. Khi đó mọi nghiệm

dương của phương trình đều m

≤ N = 1 + a / a 0 ,

với a = max {⏐ai⏐} i = 0, n sao cho ai < 0.

Ví dụ 4. Cho phương trình: 5x5 - 8x3 + 2x2 - x + 6 = 0

Tìm cận trên nghiệm dương của phương trình trên

Giải: Ta có a2 = -8 là hệ số âm đầu tiên, nên m = 2

a = max( 8, 1) = 8

Vậy cận trên của nghiệm dương: N = 1 + 8 / 5

* Âënh lyï 5:

17

Cho phæång trçnh (1), xeït caïc âa thæïc:

ϕ1(x) = xn f (1/x) = a0 + a1x + ... + anxn

ϕ2(x) = f(-x) = (-1)n (a0xn - a1xn-1 + a2xn-2 - ... + (-1)nan)

ϕ3(x) = xn f(-1/x) = (-1)n (anxn - an-1xn-1 + an-2xn-2 - ... + (-1)na0)

Giaí sæí N0, N1, N2, N3 laì cáûn trãn caïc nghiãûm dæång cuía caïc âa thæïc f(x),

ϕ1(x), ϕ2(x), ϕ3(x). Khi âoï moüi nghiãûm dæång cuía phtrçnh (1) âãöu nàòm

trong khoaíng [1/N1, N0] vaì moüi nghiãûm ám nàòm trong khoaíng [-N2,-1/N3]

Vê duû 5. Xét phương trình

3x2 + 2x - 5 = 0 → N0 = 1 + 5/3 (âënh lyï 4)

ϕ1(x) = 3 + 2x - 5x2 → N1 khäng täön taûi (a0 < 0)

ϕ2(x) = 3x2 - 2x - 5 → N2 = 1 + 5/3 (âënh lyï 4)

ϕ3(x) = 3 - 2x - 5x2 → N3 khäng täön taûi (a0 < 0)

Váûy: moüi nghiãûm dæång x < 1 + 5/3

moüi nghiãûm ám x > - (1 +5/3) = - 8/3

4.4. Chính xác hoá nghiệm

4.4.1. Phương pháp chia đôi

a. Ý tưởng

Cho phương trình f(x) = 0, f(x) liên tục và trái dấu tại 2 đầu [a,b]. Giả sử

f(a) < 0, f(b) < 0 (nếu ngược lại thì xét –f(x)=0 ). Theo định lý 1, trên [a,b]

phương trình có ít nhất 1 nghiệm μ.

Cách tìm nghiệm μ:

Đặt [a0, b0] = [a, b] và lập các khoảng lồng nhau [ai , bi ] (i=1, 2, 3, …)

[ai, (ai-1+ bi-1)/2 ] nếu f((ai-1+ bi-1)/2) >0

[ai, bi] =

[(ai-1+ bi-1)/2, bi] nếu f((ai-1+ bi-1)/2) < 0

Như vậy:

- Hoặc nhận được nghiệm đúng ở một bước nào đó:

μ = (ai-1+ bi-1)/2 nếu f((ai-1+ bi-1)/2) = 0

- Hoặc nhận được 2 dãy {an} và {bn}, trong đó:

18

{an}: là dãy đơn điệu tăng và bị chặn trên

{bn}: là dãy đơn điệu giảm và bị chặn dưới

nên ∃ = = μ

→ α n n n

lim a lim b là nghiệm phương trình

Ví dụ 6. Tìm nghiệm phương trình: 2x + x - 4 = 0 bằng ppháp chia đôi

Giải:

- Tách nghiệm: phương trình có 1 nghiệm x ∈ (1,2)

- Chính xác hoá nghiệm: áp dụng phương pháp chia đôi ( f(1) < 0)

Bảng kết quả:

an bn )

2

f (an + bn

1 2 +

1.5 -

1.25 -

1.375 +

1.438 +

1.406 +

1.391 -

1.383 +

1.387 -

1.385 -

1.386 1.387

lima lim bn 1.386 n n n 11

= =

→α →

Kết luận: Nghiệm của phương trình: x ≈ 1.386

b. Thuật toán

- Khai báo hàm f(x) (hàm đa thức, hàm siêu việt)

- Nhập a, b sao cho f(a)<0 và f(b)>0

- Lặp

c = (a+b)/2

nếu f(c) > 0 → b = c

ngược lại a = c

trong khi (⏐f(c)⏐> ε) /* ⏐a - b⏐ > ε và f(c) != 0 */

19

- Xuất nghiệm: c

4.4.2. Phương pháp lặp

a. Ý tưởng

Biến đổi tương đương: f(x) = 0 <=> x = g(x)

Chọn giá trị ban đầu x0 ∈khoảng nghiệm (a,b),

tính x1 = g(x0), x2 = g(x1), … , xk = g(xk-1)

Như vậy ta nhận được dãy {xn}, nếu dãy này hội tụ thì tồn tại giới hạn

n→∞ limxn =η (là nghiệm phương trình )

b. Ý nghĩa hình học

Hoành độ giao điểm của 2 đồ thị y=x và y=g(x) là nghiệm phương trình

Trường hợp hình a: hội tụ đến nghiệm μ

Trường hợp hình a: không hội tụ đến nghiệm μ (phân ly nghiệm)

Sau đây ta xét định lý về điều kiện hôi tụ đến nghiệm sau một quá trình lặp

Định lý (điều kiện đủ)

Giả sử hàm g(x) xác định, khả vi trên khoảng nghiệm [a,b] và mọi giá trị g(x)

đều thuộc [a,b]. Khi đó nếu ∃ q > 0 sao cho ⏐g’(x)⏐≤q<1 ∀x (a,b) thì:

+ Quá trình lặp hội tụ đến nghiệm không phụ thuộc vào x0 ∈ [a,b]

+ Giới hạn n→∞ limxn =η là nghiệm duy nhất trên (a, b)

Lưu ý:

- Định lý đúng nếu hàm g(x) xác định và khả vi trong (-∞,+∞), trong

khi đó điều kiện định lý thoả mãn.

μ x2 x1 x0 x μ x0 x1 x2 x

y y = x y y = x

y = g(x)

A

B

C

C

B

A

Hình a Hình b

20

- Trong trường hợp tổng quát, để nhận được xấp xỉ xn vớI độ chính

xác ε cho trước, ta tiến hành phép lặp cho đến khi 2 xấp xỉ liên tiếp

thoả mãn:

ε

+ − ≤ q

x x 1 q n 1 n

Ví dụ 7. Tìm nghiệm: x3 - x - 1 = 0 bằng phương pháp lặp

Giải: - Tách nghiệm: phương trình có một nghiệm ∈ (1,2)

- Chính xác hoá nghiệm:

3

2

3 3 ; x x 1

x

x x 1 0 x x 1; x x 1 = +

+

− − = ⇔ = − =

Chọn g(x) = 3 x +1

1

(x 1)

1

3

g'(x) 1 3 2 <

+

= ∀x∈(1,2)

=> áp dụng phương pháp lặp (chọn x0 = 1)

x g(x) = 3 x +1

1 1.260

1.260 1.312

1.312 1.322

1.322 1.324

1.324 1.325

1.325 1.325

⏐x4 - x5⏐ < ε = 10-3

Nghiệm phương trình x ≈ 1.325

c. Thuật toán

- Khai báo hàm g(x)

- Nhập x

- Lặp: y= x

x = g(x)

trong khi ⏐x - y⏐> ε

- Xuất nghiệm: x (hoặc y)

21

4.4.3. Phương pháp tiếp tuyến

a. Ý tưởng

Chọn x0 ∈ khoảng nghiệm (a, b)

Tiếp tuyến tại A0 (x0, f(x0)) cắt trục x tại điểm có hoành độ x1,

Tiếp tuyến tại A1 (x1, f(x1)) cắt trục x tại điểm có hoành độ x2, …,

Tiếp tuyến tại Ak (xk, f(xk)) cắt trục x tại điểm có hoành độ xk, …

Cứ tiếp tục quá trình trên ta có thể tiến dần đến nghiệm μ của phương trình.

* Xây dựng công thức lặp:

Phương trình tiếp tuyến tại Ak (xk, f(xk))

y - f(xk) = f’(xk)*(x - xk)

Tiếp tuyến cắt trục x tại điểm có toạ độ (xk+1, 0)

Do vậy: 0 – f(xk) = f’(xk)*(xk+1 - xk)

f '(x )

x x f (x )

k

k

k+1 = k −

b. Ý nghĩa hình học

Định lý (điều kiện hội tụ theo Furiê_điều kiện đủ)

Giả sử [a,b] là khoảng nghiệm của phương trình f(x)=0. Đạo hàm f’(x),

f’’(x) liên tục, không đổi dấu, không tiêu diệt trên [a,b]. Khi đó ta chọn xấp

xỉ nghiệm ban đầu x0 ∈[a,b] sao cho f(x0)*f’’(x0) > 0 thì quá trình lặp sẽ hội

tụ đến nghiệm.

Ví dụ 8. Giải phương trình: x3 + x - 5 = 0 bằng phương pháp tiếp tuyến

Giải: - Tách nghiệm:

f(x) = x3 + x - 5

a μ x2 x1 x0 b

x

[ ]

A1

f(x)

→ tiếp tuyến

y

A0

22

f’(x) = 3x2 + 1 > 0 ∀x

n→−∞ limf (x)=− ∞ , n→+∞ limf (x)=+ ∞

Phương trình trên có 1 nghiệm duy nhất

f(1)* f(2) = (-3)*5 < 0

Vậy phương trình có 1 nghiệm duy nhất x ∈ (1, 2)

- Chính xác hoá nghiệm:

f’’(x) = 6x > 0 ∀x ∈ (1, 2)

f’(x) > 0 ∀x

Thoả mãn điều kiện hội tụ Furiê, áp dụng phương pháp tiếp tuyến

Chọn với x0 = 2 ( vì f(2). f’’(2) > 0)

x f(x)/f’(x)

2 0.385

1.615 0.094

1.521 0.005

1.516 0.000

1.516

Vậy nghiệm x ≈ 1.516

c. Thuật toán

- Khai báo hàm f(x), fdh(x)

- Nhập x

- Lặp y= x

x = y – f(y)/fdh(y)

trong khi ⏐x - y⏐> ε

- Xuất nghiệm: x (hoặc y)

4.4.4. Phương pháp dây cung

a. Ý tưởng

Giả sử [a, b] là khoảng nghiệm phương trình f(x)=0. Gọi A, B là 2 điểm

trên đồ thị f(x) có hoành độ tương ứng là a, b. Phương trình đường thẳng

qua 2 điểm A(a,f(a)), B(b, f(b)) có dạng:

b a

x a

f (b) f (a)

y f (a)

=

23

Dây cung AB cắt trục x tại điểm có toạ độ (x1, 0)

Do đó:

b a

x a

f (b) f (a)

0 f (a) 1

=

f (b) f (a)

x a (b a)f (a) 1 −

= −

Nếu f(a)*f(x1) <0, thay b=x1 ta có khoảng nghiệm mới là (a, x1)

Nếu f(b)*f(x1) <0, thay a=x1 ta có khoảng nghiệm mới là (x1, b)

Tiếp tục áp dụng phương pháp dây cung vào khoảng nghiệm mới ta được

giá trị x2. Lại tiếp tục như thế ta nhận được các giá trị x3, x4, … càng tiến

gần với giá trị nghiệm phương trình.

b. Ý nghĩa hình học

Ví dụ 9. Giải phương trình x3 + x - 5 = 0 bằng phương pháp dây cung

Giải:

- Tách nghiệm: Phương trình có 1 nghiệm x∈(1, 2)

- Chính xác hoá nghiệm:

f(1) = -3 < 0, f(2) = 5 > 0

x

y

0 a

x2 x1 b

B

C

D

A

24

Bảng kết quả:

a b x f(x)

1

1.333

1.379

1.385

1.386

2 1.333

1.379

1.385

1.386

1.386

-0.447

-0.020

-0.003

-0.000

Vậy nghiệm phương trình: x ≈1.386

c. Thuật toán

- Khai báo hàm f(x)

- Nhập a, b

- Tính x = a – (b-a)f(a) / (f(b)-f(a))

- Nếu f(x)*f(a) <0

Lặp b = x

x = a – (b-a)f(a) / (f(b)-f(a))

trong khi ⏐x - b⏐> ε

Ngược lại

Lặp a = x

x = a – (b-a)f(a) / (f(b)-f(a))

trong khi ⏐x - a⏐> ε

- Xuất nghiệm: x

25

BÀI TẬP

1. Tìm nghiệm gần đúng các phương trình:

a. x3 – x + 5 = 0 b. x3 – x – 1 = 0

c. sinx –x + 1/4 = 0 d. x4 – 4x – 1= 0

bằng phương pháp chia đôi với sai số không quá 10-3

2. Tìm nghiệm gần đúng các phương trình:

a. x3 – x + 5 = 0 b. x4 – 4x – 1 = 0

bằng phương pháp dây cung với sai số không quá 10-2

3. Tìm nghiệm gần đúng các phương trình:

a. ex – 10x + 7 = 0 b. x3 + x – 5 = 0

bằng phương pháp tiếp tuyến với sai số không quá 10-3

4. Dùng phương pháp lặp tìm nghiệm dương cho phương trình

x3 – x – 1000 = 0 với sai số không quá 10-3

5. Tìm nghiệm dương cho phương trình: x3 + x2 –2x – 2 = 0

6. Tìm nghiệm âm cho phương trình: x4 - 3x2 + 75x – 1000 = 0

7. Dùng các phương pháp có thể để tìm nghiệm gần đúng cho phương trình

sau: cos2x + x – 5 = 0

8. Viết chương trình tìm nghiệm cho có dạng tổng quát:

f(x) = a0xn + a1xn-1 + … + an-1x + an = 0

a. Áp dụng phương pháp chia đôi

b. Áp dụng phương pháp dây cung

9. Viết chương trình tìm nghiệm cho phương trình ex – 10x + 7 = 0 bằng

phương pháp tiếp tuyến.

10.Viết chương trình xác định giá trị x1, x2 theo định lý 3.

11. Viết chương trình tìm cận trên của nghiệm dương phương trình đại số

theo định lý 4.

26

CHƯƠNG V GIẢI HỆ PHƯƠNG TRÌNH

ĐẠI SỐ TUYẾN TÍNH

5.1. Giới thiệu

Cho hệ phương trình tuyến tính:

a11x1 + a12x2 + ... + a1nxn = a1n+1

a21x1 + a22x2 + ... + a2nxn = a2n+1

… …

an1x1 + an2x2 + ... + annxn = ann+1

Hệ phương trình trên có thể được cho bởi ma trận:

a11 a12 ... a1n a1n+1

a21 a22 ... a2n a2n+1

....

Ann+1 =

an1 an2 ... ann ann+1

Vấn đề: Tìm vectơ nghiệm x = (x1 , x 2 ,..., x n )

* Phương pháp:

- Phương pháp đúng (Krame, Gauss, khai căn): Đặc điểm của các phương

pháp này là sau một số hữu hạn các bước tính, ta nhận được nghiệm đúng

nếu trong quá trình tính toán không làm tròn số

- Phương pháp gần đúng (Gauss Siedel, giảm dư): Thông thường ta cho

ẩn số một giá trị ban đầu, từ giá trị này tính giá trị nghiệm gần đúng tốt hơn

theo một qui tắc nào đó. Quá trình này được lặp lại nhiều lần và với một số

điều kiện nhất định, ta nhận được nghiệm gần đúng.

5.2. Phương pháp Krame

- Khai báo hàm Dt tính định thức ma trận vuông cấp n

- Nhập n, aij (i = 1,n; j =1,n +1)

- d = Dt (A)

- Xét + d = 0

+ d # 0 {di = Dt(Ai) ; xi = di/d }

27

5.3. Phương pháp Gauss

5.3.1. Nội dung phương pháp

- Biến đổi Ma trận A về ma trận tam giác trên

a11 a12 ... a1n a1n+1

a21 a22 ... a2n a2n+1

........ A =

an1 an2 ... ann ann+1

a11 a12 ... a1n a1n+1

0 a'22 ... a'2n a'2n+1

......

→ A=

0 0 ... a'nn a'nn+1

Cách biến đổi A → A’: Thực hiện n-1 lần biến đổi

Lần biến đổi i (làm cho aji = 0; j = i + 1 → n) bằng cách:

dòng j = dòng j + dòng i * m (m = -aji / aij )

- Tìm nghiệm theo quá trình ngược: xn → nn-1 → ... → x1

Ví dụ 1. Giải hệ phương trình

1 2 -1 3 5 1 2 -1 3 5

-2 X 2 1 0 -1 2 → 0 -3 2 -7 -8

1 X -1 3 2 4 8 5/3 0 5 1 7 13

1 X -2 0 5 1 4 4/3 0 4 3 7 14

1 2 -1 3 5 1 2 -1 3 5

0 -3 2 -7 -8 0 -3 2 -7 -8

0 0 13/3 -14/3 -1/3 0 0 13/3 -14/3 -1/3

13

−17

0 0 17/3 -7/3 10/3

0 0 0 49/13 49/13

⇒ x4 = 1; x3 = 1; x2 = 1; x1 = 1

Vậy nghiệm hệ phương trình x = (1,1,1,1)

5.3.2. Thuật toán

- Nhập n, aij ( i = 1, n, j = 1, n +1) (nhập trực tiếp hoặc từ file)

28

- Biến đổi A → A’ (ma trận tam giác trên)

Lặp i = 1 → n -1

Tìm j sao cho aji # 0

+ Xét aij = 0 →

Hoán đổi dòng i và dòng j cho nhau

+ Lặp j = i + 1 → n

• m = -aij/aii

• Lặp k = i → n +1 ajk = ajk + aik * m

- Tìm nghiệm

j ii

j i 1

ij 1 in i a / x a a x ⎟

⎟⎠

⎜ ⎜⎝

= − Σ

= +

+ ( i =n→ 1)

Lặp i = n → 1

• s = 0

• lặp j = i + 1 → n S = S + aij * xj

• xi = (ain+1 - s)/aii

- Xuất xi (i=1→n)

5.4. Phương pháp lặp Gauss - Siedel (tự sửa sai)

5.4.1. Nội dung phương pháp

Biến đổi hệ phương trình về dạng:

→ → →

x = B x + g

x = (x1, x2 ,......, xn )

; g = (g1,g2 ,......,gn )

; B = {bij}n

Cách biến đổi:

a11x1 +a12x2 + ....+ a1nxn = a1n+1

a21x1 +a22x2 + ....+ a2nxn = a2n+1

.......

an1x1 +an2x2 + ....+ annxn = ann+1

x (a a x j ) / a11( j 1)

j 1

j 1 1 n 1 ≠ − = Σ=

+

....

x (a a x j ) / ann ( j n)

j 1

nj 1 nn n ≠ − = Σ=

+

Tổng quát:

29

x (a a x j ) / aii ( j i)

j 1

ij 1 in i ≠ − = Σ=

+ (*)

Cho hệ phương trình xấp xỉ nghiệm ban đầu: x (x , x ,..., x0 )

0

2

00

0 =

Thay 0 x

vào (*) để tính: x (x , x ,..., x 1 )

1

2

1

1 = 0

x (a a x ) / a ii ( j i)

0j

j 1

in 1 ij

1i

≠ − = Σ=

+

Tương tự, tính 2 x

→ , 3 x

, …

Tổng quát: x (a a x ) / a ii ( j i)

kj

j 1

in 1 ij

k 1

i ≠ − = Σ=

+

+

Quá trình lặp sẽ dừng khi thoả mãn tiêu chuẩn hội tụ tuyệt đối:

x x k ( i 1, n )

k i

i − < ε ∀ = +

Khi đó ) x ,.., x , x ( x kn

k2

k

k = 1 là nghiệm của hệ phương trình

Điều kiện hội tụ:

Hệ phương trình có ma trận lặp B thoả mãn:

r1 max b 1

j 1

i ij

< = Σ=

hoặc r max b 1

i 1

ij j 2 < = Σ=

hoặc r b 1

i 1 j 1

2

3 = ΣΣ ij <

= =

thì quá trình sẽ hội tụ đến nghiệm.

Ví dụ 2. Giải hệ phương trình

10 2 1 10

1 10 2 10

1 1 10 8

x1 = -0,2x2 - 0,1x3 + 1

x2 = -0,1x1 - 0,2x3 + 1,2

x3 = -0,1x1 - 0,1x2 + 0,8

30

0 -0,2 -0,1

-0,1 0 -0,2

B =

-0,1 -0,1 0

g = (1, 1.2, 0.8)

Do r1 max b 0.3 1

3

j 1

i ij

< = = Σ=

thoả mãn điều kiện hội tụ

Áp dụng Phương pháp Gauss - Siedel:

Chọn x 0 = ( 0 ,0 ,0 )

thay vào có x 1 = (1, 1.2, 0.8)

Tương tự tính x 2 , x 3

→ →

...

Bảng kết quả:

x1 x2 x3

1 1.2 0.8

0.68 0.94 0.58

0.754 1.016 0.638

0.733 0.997 0.623

0.738 1.002 0.627

0.737 1.001 0.626

0.737 1.001 0.626

Nghiệm hệ phương trình: x = (0.737, 1.001, 0.626)

Vì x x 6 10 3 i 1,3

7

i − < ∀ = −

5.4.2. Thuật toán

- Nhập n, aij (i=1→n, j=1→n+1)

- Nhập xi = (i =1→n)

- Lặp

t = 0

lap i = 1 → n

{ S = 0

lap j = 1 → n do

if (j ≠ i) S = S + aij * xj

yi = (ain + 1 - S ) / aii

if ( | x1[i] - x 0 [i] | > = ε ) t=1

31

xi = yi }

trong khi (t)

- Xuất xi (i =1→n)

5.5. Phương pháp giảm dư

5.5.1. Nội dung phương pháp

Biến đổi hệ phương trình về dạng:

a1n + 1 - a11x1 - a12x2 - ... - a1nxn = 0

a2n + 1 - a21x1 - a22x2 - ... - a2nxn = 0 (1)

.......

ann + 1 - an1x2 - an2x2 - ... - annxn = 0

Chia dòng i cho aii # 0

b1n + 1 - b12x2 - b13x2 - ... - x1 = 0

b2n + 1 - b21x1 – b23x3 - ... - x2 = 0 (2)

.......

bnn + 1 - bn1x1 - bn2x2 - ... - xn = 0

Cho vectơ nghiệm ban đầu x ( x , x ,..., x 0 )

0

2

0

0 = 1

Vì 0 x

→ không phải là nghiệm nên:

b1n+1 - b12x2

0 - b13x3

0 - ... - x1

0 = R1

0

b2n+1 - b21x1

0 - b23x3

0 - ... - x2

0 = R2

0

.............................

bnn+1 - bn1x1

0 - bn2x2

0 - ... - xn

0 = Rn

0

0

0

2

0

1 R ,......., R , R là các số dư do sự sai khác giữa 0 x

với nghiệm thực của

hệ phương trình

Tìm Rs

0 = max {|R1

0|, | R2

0|, ... | Rn

0|} vaì laìm triãût tiãu phán tæí âoï bàòng

caïch cho xs mäüt säú gia δxs = Rs

0, nghéa laì xs

1 = xs

0 + Rs

0

Tính lại các số dư :

Rs

1 = 0

Ri

1 = Ri

0 - bis * δxs = Ri

0 - bis * Rs

0 (i = 1􀃆 n)

Cæï tiãúp tuûc quaï trçnh làûp trãn cho âãún khi : ⎟Ri

k⎟< ε (∀i = 1􀃆n) thç Xk =

(x1

k, x2

k,... xn

k) laì nghiãûm cuía hã phtrçnh.

32

Ví dụ 3. Giải hệ phương trình:

10 -2 -2 6

-2 10 -1 7

1 1 -10 8

Giải: Biến đổi về hệ phương trình tương đương

0,6 + 0,2 x2 + 0,2x3 - x1 = 0

0,3 + 0,2 x1 + 0,2x3 - x2 = 0

0,8 + 0,1 x1 + 0,1x2 - x3 = 0

Cho x 0 = (0,0,0) → R 0 = (0.6, 0.7, 0.8)

→ →

R max{R0 }

0

3 = ∀i = 1,3

x31 = x R0 0.8

3

0

3 + =

R2 = 78 . 0 8 . 0 1 . 0 7 . 0 R . b R 03

23

0

2 + = + × =

76 . 0 8 . 0 2 . 0 6 . 0 R . b R R 03

13

0

1

11

= + = + × =

R1 = (0.76, 0.78, 0)

Tương tự ta có bảng kết quả:

x1 x2 x3 R1 R2 R3

0 0 0 0.6 0.7 0.8

0.8 0.76 0.78 0

0.78 0.92 0 0.08

0.92 0 0.18 0.17

0.96 0.04 0 0.19

0.99 0.07 0.02 0

0.99 0 0.03 0.01

0.99 0.01 0 0.01

1 0.01 0 0

1 0 0.01 0

1 0 0 0

Vậy nghiệm hệ phương trình x = (1, 1, 1)

5.5.2. Thuật toán

- Nhập n, aij, xi

- Biến đổi hệ phương trình (1) về dạng (2)

33

for (i=1, i<= n, i++)

{ for (j=1, j<=n+1; j ++)

if (i! = j) a[i,j] = a [i,j]/a[i,i]

a[i,i] = 1

}

- Tính r[i] ban đầu (i = 1􀃆n)

for i = 1 → n do

{ r[i] =a [i, n+1]

for j = 1 → n do r[i] = r [i] - a[i,j] * x [j] }

- Lap

t = 0 /* cho thoat*/

/* Tìm rs = max {|r[i]|} (i = 1􀃆n) & tính lại xs*/

max = |r[1]|; k =1

for i = 2 → n do

if (max < |r[i]| ) { max = |r[i]; k= i }

x [k] = x [k] + r[k]

/* Tính lại R[i] kiểm tra khả năng lặp tiếp theo */

d = r[k]

for i =1 → n

{ r[i] = r[i] - a[i, k] * d

if (|r[i]| > ε) thi t =1 /* cho lap*/

trong khi ( t )

- Xuất nghiệm: x[i] (i = 1→n)

Lưu ý:

- Phương pháp chỉ thực hiện được khi aii # 0, nếu không phảI đổi dòng

- Quá trình hội tụ không phụ thuộc vào x0 mà chỉ phụ thuộc vào bản chất

của hệ phương trình.

- Mọi hệ phương trình có giá trị riêng λ ≥ 1 đều hội tụ đến nghiệm một cách

nhanh chóng.

- Nếu các phần tử aii càng lớn hơn các phần tử trên dòng bao nhiêu thì quá

trình hội tụ càng nhanh.

34

CHƯƠNG VI TÌM GIÁ TRỊ RIÊNG - VECTƠ RIÊNG

6.1. Giới thiệu

Cho ma trận vuông cấp n

a11 a12 ... a1n

a21 a22 ... a2n

.......

A =

an1 an2 ... ann

Tìm giá trị riêng, Vectơ riêng →

x của ma trận A

Nghĩa là: tìm λ và →

x sao cho :

det (A - λE) = 0 ( E : Ma trận đơn vị)

(A - λE) →

x = 0

Để tránh việc khai triển định thức (đòi hỏi số phép tính lớn) khi tìm λ ta có

thể áp dụng phương pháp Đanhilepski. Ở phương pháp này ta chỉ cần tìm

ma trận B sao cho B đồng dạng với ma trận A và B có dạng ma trận

Phơrêbemit.

p1 p2 ... pn-1 pn

1 0 ... 0 0

0 1 ... 0 0

....

P =

0 0 ... 1 0

Khi đó giá trị riêng của ma trận A cũng là giá trị riêng của ma trận B.

6.2. Ma trận đồng đạng

6.2.1. Định nghĩa

Ma trận B gọi là đồng dạng với ma trận A (B ∼ A) nếu tồn tại ma trận

không suy biến M (det(M)≠ 0) sao cho B = M-1A M

6.2.2. Tính chất:

A ∼ B ⇒ B ∼ A

A ∼ B, B ∼ C ⇒ A ∼ C

A ∼ B ⇒ giá trị riêng λ của A và B trùng nhau.

35

6.3. Tìm giá trị riêng bằng phương pháp Đanhilepski

6.3.1. Nội dung phương pháp

Thực hiện n-1 lần biến đổi:

* Lần biến đổi 1: Tìm M-1 , M sao cho A1 = M-1 A M ∼ A

và dòng n của A1 có dạng: 0 0 0 ... 1 0

1 0 ... 0

0 1 ... 0

an1 an2 ... ann

M-1 =

0 0 ... 1

M-1

n-1j = anj

1 0 ... 0 0

0 1 ... 0 0

nn 1

n1

a

a

nn 1

n2

a

a

nn 1 a

1

nn 1

a

a

M =

0 0 ... 0 1

nn 1 a

1

nếu j = n -1

Mn-1j =

nn 1

nj

a

a

nếu j # n - 1

A1 = M-1 A M ∼ A

* Lần biến đổi 2: Chọn M-1, M sao cho A2 = M-1 A1 M ∼ A1

và dòng n-1 của A2 có dạng: 0 0 0 ... 1 0 0

A2 ∼ A1 , A1∼ A => A2 ∼ A (tính chất)

…. …

* Lần biến đổi thứ n-1

Ta nhận được ma trận An-1 ∼ A và An-1 có dạng của P.

Khi đó định thức

det (P-λE) = (-1)n (λn - p1 λn-1 - … - pn-1λ - pn)

det (p-λE) = 0 ⇔ λn - p1 λn-1 - … - pn-1λ - pn = 0

36

Giải phương trình, suy ra λ

Ví dụ 1. Tìm giá trị riêng của ma trận:

2 1 0

A 1 3 1

=

0 1 2

n = 3

ta tìm:

p1 p2 P3

P 1 0 0

=

0 1 0

Lần 1: Chọn

2 1 -2

A1 = M-1A M 1 5 -5

=

0 1 0

Lần 2: Chọn

7 -14 8

A2 = M-1A1M= 1 0 0

0 1 0

=P

Giá trị riêng λ là nghiệm phương trình: λ3 - 7λ2 + 14λ - 8 = 0

⇔ (λ-2) (λ-1) (λ-4) = 0 ⇔ λ = 2; λ=1; λ=4

1 0 0

M-1 0 1 2

=

0 1 0

1 0 0

M 0 1 -2

=

0 0 1

1 5 -5

M-1 0 1 0

=

0 0 1

1 -5 5

M 0 1 0

=

0 0 1

37

6.3.2. Thuật toán

- Nhập n, aij ( i,j = 1􀃆n)

- Khai báo hàm nhân 2 ma trận vuông cấp n

(C = A x B => ik kj

k 1

ij b a c × =Σ=

- Lặp k = n -1 → 1 (phần tử biến đổi : ak+1 k )

/* Tính 2 ma trận M, M1 (M1 la ma tran nghich dao cua M) */

for i = 1 → n

for j = 1 n

if i ≠ k

if i = j {M[i,j] = 1; M1[i,j] = 1 }

else {M[i,j] = 0; M1[i,j] = 0 }

else { M1[i,j] = a[k+1,j]

if (j = k) M[i,j] = 1/a[k+1,k]

else M[i,j] = - a[k+1,j]/a[k+1,k] }

/* Gọi hàm nhân 2 lần */

Lần 1 : vào A, M; ra B

Lần 2 : vào M1; B; ra A

- Xuất aij ( i,j = 1→n)

􀂙 Thuật toán nhân 2 ma trận

for (i=1, i < = n; i++)

for (j=1; j< = n; j++) {

c[i] [j] = 0

for (k=1; k < = n; k++) c[i] [j] + = a [i] [k] * b [k] [j]

}

38

6.4. Tìm vectơ riêng bằng phương pháp Đanhilepski

6.4.1. Xây dựng công thức

Gọi →

y là vectơ riêng của ma trận P ∼ A

Ta có: (P - λE) →

y = 0

P→

y = λE→

y

M-1. A. M . →

y = λE→

y

Nhân 2 vế cho M:

M M-1. A M →

y = M λE→

y

A M →

y = λ E M→

y

Đặt →

x = M→

y

A →

x = λE→

x

(A - λE) →

x = 0

Vậy →

x = M→

y là vectơ riêng của A

1 2 n 1

1

1

1

n 2

1

n 1 P M .M ...M .A.M .M .M −

− −

− =

Mi: Ma trận M xác định được ở lần biến đổi thứ i

và M = M1 M2 ... Mn-1

Xác định →

y

(P-λE) →

y = 0

p1 - λ p2 ... pn-1 pn y1

1 λ ... 0 0 y2

...... ...

0 0 ... 1 -λ yn

= 0

(p1 - λ)y1 + p2y2 + ... + pn-1yn-1 + pnyn = 0

y1 - λy2 = 0

.....

yn-1 - λyn = 0

cho: yn = 1 ⇒ yn-1 = λ ,

yn-2 = λ yn-1 = λ 2 , ... , y1 = λn-1

39

Vậy →

y = (λn-1, λn-2, ... , λ2, λ, 1)

Ví dụ 2. Tìm vectơ riêng của A

2 1 0

A 1 3 1

=

0 1 2

Giải: Gọi →

y là vectơ riêng của ma trận P ∼ A

Ở ví dụ 1 ta có:

λ1 = 2 ⇒ →

y 1 = (4, 2, 1)

λ2 = 1 ⇒ →

y 2 = (1, 1, 1)

λ3 = 4 ⇒ →

y 3 = (16, 4, 1)

Tìm M:

1 0 0 1 -5 -5 1 -5 5

M = 1 0 1 -2 0 1 0 0 1 -2

2

11

M .M =

0 1 0 0 0 1

=

0 0 1

→x

= M →

y

1 -5 5 4 -1

0 1 -2 2 0 →

x 1 =

0 0 1 1

=

1

1 -5 5 1 1

0 1 -2 1 -1 →

x 2 =

0 0 1 1

=

1

1 -5 5 16 1

0 1 -2 4 2 →

x 3 =

0 0 1 1

=

1

Vậy vectơ riêng của A:

→x

1 = (-1, 0, 1) →

x 2 = (1, -1, 1) →

x 3 = (1, 2, 1)

6.4.2. Thuật toán

Bổ sung thêm lệnh trong thuật toán tìm trị riêng như sau:

40

- Khởi tạo B1 = E

- Lặp k = n-1 → 1

/* Tính 2 ma trận M, M1 */

/* Gọi hàm nhân 3 lần */

Lần 1: vào A, M; ra B

Lần 2: vào M1, B; ra A

Lần 3: vào B1, M; ra B

/* Gán lại ma trận B1=B */

- Xuất aij, bij

41

CHƯƠNG VII NỘI SUY VÀ PHƯƠNG PHÁP

BÌNH PHƯƠNG BÉ NHẤT

7.1. Giới thiệu

Trong toán học ta thường gặp các bài toán liên quan đến khảo sát và tính

giá trị các hàm y = f(x) nào đó. Tuy nhiên trong thực tế có trường hợp ta

không xác định được biểu thức của hàm f(x) mà chỉ nhận được các giá trị

rời rạc: y0, y1, ..., yn tại các điểm tương ứng x0, x1, ..., xn.

Vấn đề đặt ra là làm sao để xác định giá trị của hàm tại các điểm còn lại.

Ta phải xây dựng hàm ϕ (x) sao cho:

ϕ (xi) = yi = f (xi) với i = 0, n

ϕ (x) ≈ f (x) ∀x thuộc [a, b] và x ≠ xi

- Bài toán xây dựng hàm ϕ (x) gọi là bài toán nội suy

- Hàm ϕ (x) gọi là hàm nội suy của f(x) trên [a, b]

- Các điểm xi ( i = 0, n ) gọi là các mốc nội suy

Hàm nội suy cũng được áp dụng trong trường hợp đã xác định được biểu

thức của f(x) nhưng nó quá phức tạp trong việc khảo sát, tính toán. Khi đó

ta tìm hàm nội suy xấp xỉ với nó để đơn giản phân tích và khảo sát hơn.

Trong trường hợp đó ta chọn n+1 điểm bất kỳ làm mốc nội suy và tính giá

trị tại các điểm đó, từ đó xây dựng được hàm nội suy (bằng công thức

Lagrange, công thức Newton,…).

Trường hợp tổng quát: hàm nội suy ϕ(x) không chỉ thoả mãn giá trị hàm tại

mốc nội suy mà còn thoả mãn giá trị đạo hàm các cấp tại mốc đó.

ϕ’(x0) = f’(x0); ϕ’(x1) = f’(x1); … …

ϕ’’(x0) = f’’(x0); ϕ’’(x1) = f’’(x1); … …

Nghĩa là ta tìm hàm nội suy của f(x) thỏa mãn bảng giá trị sau:

42

xi x0 x1 ... xn

yi =f(xi) y0 y1 ... yn

y'i=f’(xi) y'0 y'1 ... y'n

y'’i=f’’(xi) y'’0 y'’1 ... y'’n

… … … … …

7.2. Đa thức nội suy Lagrange

Giả sử f(x) nhận giá trị yi tại các điểm tương ứng xi ( i = 0, n ), khi đó đa thức

nội suy Lagrange của f(x) là đa thức bậc n và được xác định theo công thức sau:

Σ=

=

i 0

L n (x) y i p n (x)

MS

TS(x)

(x x )(x x )...(x x )(x x )...(x x )

p (x) (x x )(x x )...(x x )(x x )...(x x )

i 0 i 1 i i 1 i i 1 i n

i 0 1 i 1 i 1 n

n =

− − − − −

− − − − −

=

− +

− +

Đặt W(x) = (x - x0)(x - x1)... (x - xn)

Suy ra: TS(x) =

x - xi

W(x) ; MS W' (x ) = i

Ln(x) = W(x) Σ=

i 0 i i

(x - x )W'(x )

y

Ví dụ 1. Cho hàm f(x) thoả mãn:

xi 0 1 2 4

f(xi) 2 3 -1 0

Tìm hàm nội suy của f(x), tính f(5)

Giải:

Cách 1: W(x) = x (x - 1) (x - 2) (x - 4)

W’(0) = (-1) (-2)(-4) = -8

W’(1) = 1 (-1) (-3) = 3

W’(2) = 2 (1) (-2) = -4

W’(4) = 4 (3) (2) = 24

L3(x) = )

4(x 2)

1

3(x 1)

3

x( 8)

x(x 1)(x 2)(x 4)( 2

+

+

− − −

43

= ( (x 1)(x 2)(x 4) 4x(x 2)(x 4) x(x 1)(x 4))

4

1 − − − − + − − + − −

= (x 4)( (x 1)(x 2) 4x(x 2) x(x 1))

4

1 − − − − + − + −

= (x 4)(4x 6x 2)

4

1 − 2 − −

Cách 2:

L3(x) =

2(1)( 2)

1x(x 1)(x 4)

1( 1)( 3)

3 x(x 2)(x 4)

( 1)( 2)( 4)

2 (x 1)(x 2)(x 4)

− −

− −

− −

+

− − −

− − −

= (x 4)(4x 6x 2)

4

1 − 2 − −

7.3. Đa thức nội suy Lagrange với các mối cách đều

Giả sử hàm f(x) nhận giá trị yi tại các điểm tương ứng xi ( i = 0, n ) cách đều

một khoảng h.

Đặt

h

t x − x0

= , khi đó:

x - x0 = h*t xi - x0 = h *i

x- x1 = h(t - 1) xi = x1 = h(i-1)

... ...

x - xi-1 = h(t- (i-1)) xi - xi-1 = h

x - xi+1 = h(t -(i+1)) xi - xi+1 = -h

... ...

x - xn = h(t - n) xi - xn = -h(n - i)

i(i 1) *...*1( 1) *1* 2 *...* (n i)

p (x ht) t(t 1) *...* (t (i 1)(t (i 1)) *...* (t n) 0 n i

'

n − − −

− − − − + −

+ = −

= (t i) * i!(n i)!*( 1)n i

t(t 1) *...* (t n)

− − − −

− −

Ln(x0 + ht) = t(t -1) ... (t - n)Σ=

− −

n −

i 0

(t i)i!(n i)!

y ( 1)

Ln(x0 + ht) = Σ=

− − n −

i 0

( 1) .y c

n!

t(t 1)...(t n)

Ví dụ 2. Tìm hàm nội suy của f(x) thoả mãn:

44

xi 0 2 4

f(x0) 5 -2 1

Giải:

Cách 1:

W(x) = x (x - 2) (x - 4)

W’(0) = (0 - 2) (0 - 4) = -8

W’(2) = (2 - 0) (2 - 4) = -4

W’(4) = (4 - 0) (4 - 2) = 8

L2(x) = )

(x 4).8

1

(x 2)( 4)

2

8(x 0)

x(x 2)(x 4)( 5

+

− −

− −

= )

4(x 4)

1

(x 2)

2

4x

x(x 2)(x 4) ( 5

8

1

+

− − + −

= (5(x 2)(x 4) 4x(x 4) x(x 2))

8

1 − − + − + −

= (5x 24x 20)

4

(10x 48x 40) 1

8

1 2 − + = 2 − +

Cách 2:

t 2

1.C

t 1

2C

t 0

(5C

2!

L (2t) t(t 1)(t 2)

22

1

2

0

2

2 −

+

− −

=

= )

t 2

1

t 1

4

(5

2

t(t 1)(t 2)

+

+

− −

= (5(t 1)(t 2) 4t(t 2) t(t 1)

2

1 2 − − + − + −

= (10t 24t 10) 5t 12t 5

2

1 2 − + = 2 − +

Vậy x 6x 5

4

L (x) 5 2

2 = − +

7.4. Bảng nội suy Ayken

45

Khi tính giá trị của hàm tại một điểm x=c nào đó bất kỳ mà không cần phải

xác định biểu thức của f(x). Khi đó ta có thể áp dụng bảng nội suy Ayken

như sau

7.4.1. Xây dựng bảng nội suy Ayken

c-x0 x0-x1 x0-x2 … x0-xn d1

x1-x0 c-x1 x1-x2 … x1-xn d2

x2-x0 x2-x1 c-x2 … x2-xn d3

… …

xn-x0 xn-x1 xn-x2 … c-xn dn

W(c) = (c- x0)( c- x1)…( c- xn) : Tích các phần tử trên đường chéo

W’(xi) = (xi - x0)( xi – x1)… (xi - xi-1) (xi - xi+1) ... (xi - xn)

(c - xi) W’(xi) = (xi - x0)( xi – x1)… (xi - xi-1) (c- xi)(xi - xi+1) ... (xi - xn)

di = (c-xi) W’(xi) : Tích các phần tử trên dòng i (i=0,1, …,n)

f(c) ≈ Ln(c) = W(c).Σ=

i 0 i i

(c x )W'(x )

y

f(c) ≈ W(c)Σ=

i 0 i

d

y

Ví dụ 3. Tính f (3. 5) khi biết f(x) thoả mãn

xi 1 2 3 4 5

yi 3 2 7 -1 0

Giải Xây dựng bảng nội suy Ayken

2.5 -1 -2 -3 -4 60

1 1.5 -1 -2 -3 -9

2 1 0.5 -1 -2 2

3 2 1 -0.5 -1 3

4 3 2 1 -1.5 -36

W(3.5) = 1.40625

46

f(3.5) ≈ L4 (3.5) = 3

1

2

7

9

2

20

1 − + −

7.4.2. Thuật toán

- Nhập: n, xi, yi (i = 0, n), c

- w = 1; s = 0;

- Lặp i = 0 → n

{ w = w*(c - xi)

d = c - xi

Lặp j = 0 → n

Nếu j != i thì d = d * (xi - xj)

s = s + yi/d }

- Xuất kết quả: w * s

7.5. Bảng Nội suy Ayken (dạng 2)

Xét hàm nội suy của 2 điểm: x0, x1

L01 =

1 0

0

1

0 1

1

0 x x

y x x

x x

y x x

+

=

1 0

0 1 1 0

x x

y (x x) y (x x)

− − −

=

Hàm nội suy của hai điểm x0, xi

Xét hàm p(x) có dạng:

y0 x0-x

y1 x1-x

x1-x0

y0 x0-x

L0i(x) = yi xi-x

xi-x0

L01(x) x1-x

p(x) = L0i(x) xi-x

xi - x1

47

L01(x0) (xi – x0) - L0i(x0) (x1 – x0) y0(xi - x1)

p(x0) =

xi - x1

=

xi - x1

= y0

y1 (xi - x1)

P(x1) =

xi - x1

= y1

-y1 (x1 - xi)

P(xi) =

xi - x1

= yi

Vậy p(x) là hàm nội suy của 3 điểm x0, x1, xi

Tổng quát: Hàm nội suy của n+1 điểm x0, x1,... xn

L012...n-2 n-1(x) xn-1-x

L012...n(x) = L012...n-2 n(x) xn-x

xn - xn-1

Bảng Nội suy Ayken (dạng 2)

xi yi Loi(x) Lo1i(x) Lo12i(x) ... Lo12...n(x) xi - x

x0 y0 x0 - x

x1 y1 Lo1(x) x1 - x

x2 y2 Lo2(x) Lo12(x) x2 - x

x3 y3 Lo3(x) Lo13(x) Lo123(x)

.... .... ... ...

xn yn Lon(x) Lo1n(x) Lo12n(x) ... Lo12...n(x) xn - x

Bạn đang đọc truyện trên: AzTruyen.Top

Tags: