anhtam22
thiet lap cong thuc tinh br tru va br thang theo do ben tiep xuc va do ben uon
* - tinh banh rang thang va tru theo do ben tiep xuc
us tiep xuc lon nhat @H duoc tinh theo cong thuc hec'
@H=Zm.can(qn/2p)
( p la ro)
qn: cuong do tai trong phap tuyen
p ban kinh duong cong tuong duong cua be mat
Zm he so xet den co tinh cua vat lieu
Zm= 2.E1.E2/[pi.[(1-luy2^2).E1+(1-luy1^2).E2]]
E1,E2la mondun dan hoi
luy1 , luy2 he so poat xong ( luy la gan giong chu m)
voi banh rang thep la 275.(NPa)^1/2
"A la anpha"
luy = luy1.luy2/(luy1+luy2)
luy1= N1.w=sin (aw.dw1)/2
luy2=N2.w=sin(aw.dw2)/2=u.dw1.sin(aw)/2
suy ra luy=u.dw1.sinaw/[(u+1).2]
co' qn= Fn/LH
" H viet nho"
LH= 3.bw/(4-epa)
" w viet nho, ep la epsilon, a la anpha"
epa la he so trung khop
Fn= Ft/cosaw = 2T1/(d1.cosaw)
Fn: luc phap tuyen
LH tong chieu dai tiep xuc
ke den tai trong Fn= 2T.KHpeta.KHV/(d1.cosaw)
" Hpeta, HV viet nho"
suy ra cong thuc kiem nghiem
@H=(Zm.Zep.ZH/dw1).can[ 2T1.(u+1).KHpeta.KHV/(u.bw)] <= [@H]
cong thuc thiet ke
dw1 >= cambac3( Zm^2.zep^2.Zh^2). canbac3(2T1.(u+1).KHbeta.KHV/(u.bw))
suy ra dw1 >= 77.canbac3(2T1.(u+1).KHpeta.KHV/(#bd.u.[@H]))
" #bd la xi , 1 duong cong va 1 duong thang"
aw>50.(u+1).canbac3(2T1.KHbeta.KHV/(#bd.u.[@H]^2))
- theo Us uon
@F<=[@F]
@u= Fn.cosa'.h/wu
"wu , u viet nho"
cac he so tai trong
KF=KFa.Kpbeta.Kfv=Kpbeta.Kpv
suy ra
@u= Fn.cosa'.h.KF/wu
co' wu= bw.S^2/6
" bw, w viet nho "
@n=Fn.sina'.Kf/A
A=bw.S
tai vi tri nguy hiem
@=@u-@n
@= Fn.cosa'.h.Kp.6/(bw.s^2) -(Fn.sina'.kp/(bw.s))
thay s= gm, h=lm, Fn= Ft/cosaw=2T/(d.cosaw)
suy ra @=(2T.Kf/d.cosaw.bw).[6h.cosa'/(s^2) -sina'/s]
suy ra
@= (2T.Kf.K@/d.bw.m).(6.l.cosa'/(g^2.cosaw) - sina'/(g.cosaw))
dat ( 6.l.cosa'.................cosaw)) =YF
suy ra cong thuc kiem nghiem
@F= 2T.KF.YF/(m.bw.dw)<=[ @F]
suy ra @F1=2T1.Kp.YF1.Yep/(m.dw1.bw) <=[@F1]
@F2= YF2.@F1/YF1<=[@F2]
cong thuc thiet ke
m >= 1,4 canbac3( T1.Kp.Yp1/(#bd.Z1^2.[@F1])
"#bd la xi , 1 duong cong o tren va 1 dung thang dung"
Bạn đang đọc truyện trên: AzTruyen.Top